Learning local shape descriptors with view-based convolutional networks

نویسندگان

  • Haibin Huang
  • Evangelos Kalogerakis
  • Siddhartha Chaudhuri
  • Duygu Ceylan
  • Vladimir G. Kim
  • Ersin Yumer
چکیده

Figure 1: We present a view-based convolutional network that produces local, point-based shape descriptors. The network is trained such that geometrically and semantically similar points across different 3D shapes are embedded close to each other in descriptor space (left). Our produced descriptors are quite generic — they can be used in a variety of shape analysis applications, including dense matching, prediction of human affordance regions, partial scan-to-shape matching, and shape segmentation (right).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ShapeNet: Convolutional Neural Networks on Non-Euclidean Manifolds

Feature descriptors play a crucial role in a wide range of geometry analysis and processing applications, including shape correspondence, retrieval, and segmentation. In this paper, we propose ShapeNet, a generalization of the popular convolutional neural networks (CNN) paradigm to non-Euclidean manifolds. Our construction is based on a local geodesic system of polar coordinates to extract “pat...

متن کامل

Evaluation of LBP and Deep Texture Descriptors with a New Robustness Benchmark

In recent years, a wide variety of different texture descriptors has been proposed, includingmany LBP variants. New types of descriptors based on multistage convolutional networks and deep learning have also emerged. In different papers the performance comparison of the proposed methods to earlier approaches is mainly done with some well-known texture datasets, with differing classifiers and te...

متن کامل

Learning Local Convolutional Features for Face Recognition with 2D-Warping

The field of face recognition has seen a large boost in performance by applying Convolutional Neural Networks (CNN) in various ways. In this paper we want to leverage these advancements for face recognition with 2D-Warping. The latter has been shown to be effective especially with respect to pose-invariant face recognition, but usually relies on hand-crafted dense local feature descriptors. In ...

متن کامل

Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions

Recent innovations in training deep convolutional neural network (ConvNet) models have motivated the design of new methods to automatically learn local image descriptors. The latest deep ConvNets proposed for this task consist of a siamese network that is trained by penalising misclassification of pairs of local image patches. Current results from machine learning show that replacing this siame...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.04496  شماره 

صفحات  -

تاریخ انتشار 2017